Management of Callosobruchus analis by using Different Medicinal Plants Powder on Gram

M. Bhubaneshwari Devi
Laboratory of Entomology, P.G. Department of Zoology, D.M. College of Science, Imphal – 795001, Manipur, India
Email: mbhubaneshwari@yahoo.com; Cont.: 9856806660

N. Victoria Devi
Laboratory of Entomology, P.G. Department of Zoology, D.M. College of Science, Imphal - 795001, Manipur, India
Email: naorem.victoria@yahoo.com

Abstract – In the present study, powder prepared from parts of six botanical plants viz, Melia azadarach, Perthenium hysterophorus, Phlogocanthus thrysiflorus, Vitex trifolia, Zanthoxylum acanthophyllum and Azadirachta indica were tested against Callosobruchus analis on gram in the laboratory condition. All these powders reduce significantly on rate of oviposition, rate of adult emergence, percentage grain damage and weevil perforated index effect. An adult insect were exposed to 5 g plant powder treated gram 100 seeds and was assessed after 7 days of treatment. The result obtained showed that plant powder Z. acanthophyllum was recorded highly effective in lower number of eggs, prohibiting the adult emergence and reduction in grain damage per cent over other treatment. It was concluded that M. azadarach, A. indica and Z. acanthophyllum could be used for the protection of stored rice from infestations of Callosobruchus analis.

Keywords – Plant Powder, Adult Emergence, Percentage Grain Damage, Weevil Perforated Index, Gram, Callosobruchus analis.

I. INTRODUCTION

The cow pea weevil Callosobruchus analis (F.), (Coleoptera: Bruchidae) is the most common pest of stored gram. This pest has been observed infesting seeds of 15 genera, including peanut, chickpea, bean, pea, cowpea and soya bean [12]. Among different legumes seeds, the gram is most preferred host for oviposition and development of the bruchid Callosobruchus under common storage conditions [11]. It has been reported that seed quality of chick pea during storage is significantly affected in the damage seed. The use of naturally occurring plant materials to protect agricultural product against a variety of insect pest is an old –age practice in some parts of the world [8]. Moreover, botanicals are preferred over other methods since they are easily available for large or small storages, biodegradable and least toxic to non-target organism [13]. Certain plants possess secondary metabolites, which act as antifeedants, oviposition, detergents, larvicidal and insect growth regulator [14]. Extracts from different plants have been confirmed useful against a wide range of insect should be encouraged because of greater environmental protection and food safety concerns. Plant products have proved useful in industrialized countries for the protection of grain from storage pests Fields, but these can also play a much role in the production and postharvest protection of food in developing countries [4]. Such botanicals used have well-known volatile and act as natural fumigants that kill adult pests and their progeny. The present study investigated the efficacy of botanical insecticides against C.analis for a sustainable pest control strategy.

II. MATERIALS AND METHODS

The experiment was carried out at the Laboratory of Entomology, D.M.College of Science, Imphal during May 2014. Material used and the technique employed during the course of investigation for conducting the experiments were presented here.

Test insects and maintenance

The pulse weevil, Callosobruchus analis F. was used for the present experiments. A small population of C. analis weevil was obtained from Entomology laboratory stock. They were reared and bred under laboratory condition on diet of the seeds of gram inside a growth chamber at 27 ± 2° C and 70 ± 5 % RH. Initially 50 pairs of 1-2 day-old adults were placed in a jar containing green gram seeds. The jars were sealed and a maximum of 1 week were allowed for mating and oviposition. Then parent stocks were removed and gram seeds containing eggs was transferred to fresh green gram seeds in the breeding jars that were covered with pieces of cloth fastened with rubber bands to prevent the contamination and escape of insects. The subsequent progenies of the beetles were used for all experiments.

Preparation of native botanical powders

Fresh leaves of Melia azadarach, Perthenium hysterophorus, Phlogocanthus thrysiflorus, Vitex trifolia, Zanthoxylum acanthophyllum and Azadirachta indica were collected from the surrounding of D. M College campus. Afterward they were washed in running water. The plant materials were kept in shade for air-drying and then they were dried in the oven at 60°C to gain constant weight. The powdered samples were prepared by pulverizing the dried leaves and seed with the help of a grinder. The ground samples were passed through a 25-mesh sieve to obtain fine and uniform dust. The extracts were preserved in airtight jar and stored in a refrigerator until their use for insect bioassay.

Effect of the plant powder on Callosobruchus analis

For this experiment, the grains were sterilized in an incubator, about 24 hour at 60°C to disinfect them. About 100 seeds of gram at 12% moisture content was measured in electronic balance and transferred into petridishes (9 cm) in diameter. The plant powders of 5 g were added gram seeds and mixed thoroughly. 8 newly emerged adults were released into each petridish and kept in the laboratory. For control no extract was applied on gram.
The experiment was conducted at 19°C and 82.4% relative humidity under laboratory condition. The experiment was replicated thrice. After 7 days the dead adults were removed and eggs laid on grain were recorded. The grains with beetle eggs were continuously kept till adult emergence (35 days). The emerging adults were taken out of treated grain and recorded daily up to 10 days. The grain weight loss in each infested sample was recorded after sieving the frass. Per cent weight loss was determined using control samples. Grains that were riddle with exit -holes were counted the percentage damage (PD) and weevil perforation index (WIP) of the weevil to the grains were calculated using the methods in [2] and [3] respectively.

Percentage damage =
\[
\frac{\text{Total number of treated grains perforated}}{\text{Total number of grains}} \times 100
\]

Weevil perforation index =
\[
\frac{\% \text{ treated grains perforated}}{\% \text{ control grains perforated} + \% \text{ of treated grains perforated}} \times 100
\]

Statistical analysis

The experiment was carried out by adopting analysis of variance one way classification and the data thus collected were statistically analysed by using SPSS software in a microcomputer. The F-values and Critical Difference was calculated from the ANOVA table of analysis of variance.

III. RESULTS AND DISCUSSION

Number of laid eggs

The data presented in table 1 indicate that among different botanical tested, *Z. acanthopodium* recorded significantly less number of eggs with 68.3% after 7 days of treatment followed by *A. indica* with 81.6% eggs. The order of effectiveness in reducing fecundity was *M. azadarach*, *P. hysterophorus* with 85% eggs and *P. thyrsiflorus* with 85.6% eggs. All the material provided significantly less number of eggs compared to the control. The maximum number of egg was recorded significantly in untreated control grain with 215% eggs.

Adult emergence

The mean number of *Callosobruchus analis* adults that emerged after 35 days of treatment is presented in Table 1. The result revealed that significantly higher mean number of adults emerged that significantly higher mean number of adult emerged in the control 130.3% mean when compared with the other treatments. *Vitex trifolia* was the highest among the six treatments with 67.6 % mean followed by *P. hysterophorus* with 66.6% mean number of adult emerged while *P. thyrsiflorus*, *M. azadarach*, *A. indica* and *Z. acanthopodium* recorded respectively as 60.6%, 54%, 52% and 43.3% mean number of adult emergence of *C. analis* in gram grain protected with different plant powders (Table 1) when compared with the other treatments during the infestation at 35 days after treatment. The reduction in adult population is probably due to egg mortality or larval mortality or even reduction in hatching of eggs and also might be due to presence of toxic substance [6].

Effect of grain weight

Table 2 represents the effects of plant powder extracts on grain damage. The mean percentage damage of gram grain treated with the plant powder at 35 days after treatment (DAT) followed a similar trend with the mean adult emergence. The mean percentage damage of gram grains treated with *Z. acanthopodium* dried leave powder was significantly lower than the other treatment. The percentage damage of gram grains due to infestation by *C. analis* varied from 1.13% (*A. indica* leave powder) to 29% (untreated control). The treatment with *M. azadarach*, *Z. acanthopodium*, *P. hysterophorus*, *P. thyrsiflorus*, *V. trifolia*, leave powders were also found to be significantly superior to the untreated control. Grain weight loss indicated the quantitative loss in stored grains due to the insect showing a direct relationship between insects showing a direct relationship between insect populations and weight loss. These findings were also supported by [7] who reported that treatment with powder of *Citrus lemon*, *Annona squamosa*, *Acorus calamus*, *Capsicum annum*, *Ocimum sanctum*, *Lantana camara*, *Datura stramonium*, *A. indica*, *Vitex negundo*, *Aegle marmelos* resulted in lower *Callosobruchus chinensis* fecundity and weight loss than the untreated control.

The percentage damage value show the activities of different plant materials at 5g concentrations while the weevil perforation index (WIP) compares the activities of species of different plant extracts used. From this study, it is evident that *Z.acanthopodium* and *A.indica* displayed some potential as antifeedants and repellents. The results therefore suggest the possibility of using the powder of these plants as toxicants, repellent and antifeedent agents against *C. analis*. [9] reported that the use of dry leave of *Z. acanthopodium* in seasoning of dry chillies avoiding pests and pathogens. These leave possessed a strong pungent smell which act as pest repellent. The insecticidal effect of plant powder might attribute to one or more of the following properties including repellent, antifeedant, stomach poisoning effect where insects fed on admixed grains and picked up lethal doses of treatment particles and these powders might reduce insect movement and also cause death through occlusion of their spiracles, thereby preventing respiration via trachea [10]. This finding supported the finding of [1] who showed the effectiveness of neem leaf powder and ash from various sources against different stored grain pest.

IV. CONCLUSION

Hence the present findings show that among the botanical plant powder treatments *Z. acanthopodium* and *A. indica* powder was found as effective grain protectants, oviposition deterrent, suppression of the adult emergence and less percentage of gain damage on gram. Luo et al (1995) reported that these plants have a range of chemicals which isolated and used for pest control. The test plants...
being medicinal would yield environmentally sound chemicals having no harmful effects on the non target organisms.

ACKNOWLEDGEMENT

The authors are thankful to the Department of Science and Technology (DST) for providing financial assistance during the work. The authors also thank to the Principal, and the Head, P.G. Department of Zoology, D.M. College of Science, Imphal for providing laboratory facilities.

REFERENCES

AUTHOR’S PROFILE

Dr. M.Bhubaneshwari Devi
Date of Birth: 01-01-1962
Birth Place: Imphal, Manipur, India.
Bsc. (Hons) Zoology (Manipur University)
Specialization in Master Degree in Entomology (Manipur University)
Ph. D. work & Title: Entomology-Physiological aspects on the growth and Development of mango fruit weevils (Coleoptera: Curculionidae) in relation to seasonal changes in Manipur (Manipur university)
Currently working as Associate Professor in the D.M. Collage of Science, Imphal, Manipur, India.

Major Research project undertaken: “Studies on the seasonal incidence, behavioural biology of major insect pests of mango in Manipur and their control measures by using plant extracts” Sponsoring agency by DST, New Delhi
(II) “Study on the spider fauna of Manipur”.Sponsoring Agency: UGC,
New Delhi, currently working as Co-PI
(III) “Study on the diversity of insect fauna of Loktak Lake of Manipur” Sponsoring agency by Ministry of Environment and Forest, New Delhi, is currently undergoing
(IV) “Study on the behavioural biology of the stored grain pests in the Godown of Manipur and their control measure by using plant extracts” Sponsoring agency by DST, Ministry of Science and Technology, New Delhi is currently undergoing
(V) “Development of database on Bio-resources of North-East India” Sponsoring agency by Department of Biotechnology (NER-Division) Status: Undergoing as Co-PI
17. Guideship: Approved M.Phil. (Zoology) guide of: Periyar Institute of Distance Education (PRIDE), Periyar University, and Salem; Vinayaka Missions University, Salem; Global Open University, Nagaland; CMJ University, Meghalaya
18. No. of Scholar: 7
19. Paper Publish ed : 42 papers
Email: mblubhaneshwari@yahoo.com

Naorem Victoria Devi
Place of Birth: Imphal, Manipur, India
Date of Birth: 01-02-1985
Education Qualification
B.Sc. (Hon) Zoology (Manipur University)
M.Sc. Agriculture Entomology (Sam Higgsinbottom Institute of Agriculture, Technology and Science (Deemed to be University, Allahabad) completed on the thesis “Study on Indigenous Plant Extracts with Cow urine against Plutella xylostella and Spodoptera litura on Cabbage”.
Qualified National Eligibility Test (NET-ICAR) which was held on 24 February, 2013 in the discipline of Agricultural Entomology. Currently I am working as a Research fellow on the Major Research Project entitled “Study on the behavioural biology of the stored grain pests in the Godown of Manipur and their control measure by using plant extracts” Sponsoring agency by DST, Ministry of Science and Technology, New Delhi. Working place D.M Collage of Science, Imphal, Manipur,India from June 2012 to till date.
Membership : Member of Indian Journal of Entomology .
Paper published: 18
Email: naorem.victoria@yahoo.com

Copyright © 2015 IJAIR, All right reserved
1480
Table 1: Effect of plant extracts on *Callosobruchus analis* egg laid and adult emergence on gram seed.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Doses</th>
<th>Egg Laid (Mean±SM)</th>
<th>Adult Emergence (Mean±SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-Melia azadarach</td>
<td>5g</td>
<td>85±2.35</td>
<td>54±1.69</td>
</tr>
<tr>
<td>T2-P. hysterophorus</td>
<td>5g</td>
<td>85±4.98</td>
<td>66.6±7.57</td>
</tr>
<tr>
<td>T3-P.thrysiflorus</td>
<td>5g</td>
<td>85.6±4.95</td>
<td>60.6±4.22</td>
</tr>
<tr>
<td>T4-Vitex trifolia</td>
<td>5g</td>
<td>107±7.46</td>
<td>67.6±3.03</td>
</tr>
<tr>
<td>T5-Z.acanthopodium</td>
<td>5g</td>
<td>68.3±14.25</td>
<td>43.3±8.01</td>
</tr>
<tr>
<td>T6-Azadiractha indica</td>
<td>5g</td>
<td>81.6±3.60</td>
<td>52±3.29</td>
</tr>
<tr>
<td>T7-Control</td>
<td>_</td>
<td>215±2.86</td>
<td>130.3±16.40</td>
</tr>
<tr>
<td>F-value p>0.05</td>
<td>_</td>
<td>33.861</td>
<td>11.485</td>
</tr>
<tr>
<td>C.D</td>
<td>_</td>
<td>10.21</td>
<td>5.93</td>
</tr>
</tbody>
</table>

Table 2: Effect of plant extracts on grain damage.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Doses</th>
<th>Total No. of Grains</th>
<th>No. of Perforated Grain</th>
<th>Unperforated Grain</th>
<th>Grain Damage %</th>
<th>Weevil Perforation Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-Melia azadarach</td>
<td>5g</td>
<td>300</td>
<td>205</td>
<td>95</td>
<td>68.33</td>
<td>40.75</td>
</tr>
<tr>
<td>T2-P. hysterophorus</td>
<td>5g</td>
<td>300</td>
<td>176</td>
<td>124</td>
<td>58.66</td>
<td>37.12</td>
</tr>
<tr>
<td>T3-P.thrysiflorus</td>
<td>5g</td>
<td>300</td>
<td>198</td>
<td>102</td>
<td>66</td>
<td>39.29</td>
</tr>
<tr>
<td>T4-Vitex trifolia</td>
<td>5g</td>
<td>300</td>
<td>249</td>
<td>51</td>
<td>83</td>
<td>45.52</td>
</tr>
<tr>
<td>T5-Z.acanthopodium</td>
<td>5g</td>
<td>300</td>
<td>156</td>
<td>144</td>
<td>52</td>
<td>34.36</td>
</tr>
<tr>
<td>T6-Azadiractha indica</td>
<td>5g</td>
<td>300</td>
<td>214</td>
<td>88</td>
<td>71.33</td>
<td>41.79</td>
</tr>
<tr>
<td>T7-Control</td>
<td>_</td>
<td>300</td>
<td>298</td>
<td>2</td>
<td>99.33</td>
<td>50</td>
</tr>
</tbody>
</table>

Copyright © 2015 IJAIR, All right reserved
1481