Phytotoxic Effect of Antibiotic Residues on Forage Seeds

Eluk, D.1; Frank, R.1; Nagel O. G.1; Molina; M. P.2; Althaus, R. L.1*

1Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Kreder 2805, (3080) Esperanza, Argentina. * Fax number: 54-3496-426304, email: ralthaus@fcv.unl.edu.ar
2Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Camino de Vera S/N, (46072) Valencia España

Abstract – In veterinary medicine, antibiotics are used for the treatment of infectious diseases. Some of these antibiotics are not completely metabolized and can be eliminated through the milk, urine and/or feces. In this way, antibiotic residues can reach the soil and affect the development of seeds and plants. The aim of this work was to study the effect of different concentrations of five antibiotics (enrofloxacin, kanamycin, oxytetracycline, penicillin and tylosin) on the germination frequency and root elongation of seeds of three forage species (alfalfa (Medicago sativa), melilotus (Melilotus albus) and white clover (Trifolium repens)). The results showed that the antibiotic concentrations allowed for the dairy industry (maximum residue limits) were detrimental to the germination and growth of these seeds: 0.10 mg/L of enrofloxacin affected the three species studied, whereas 0.10 mg/L of oxytetracycline affected M. sativa and T. repens. Due to the negative effect of antibiotic residues on forage seeds, the whey contaminated with these residues should be treated before being discarded into the soil.

Keywords – Antibiotics, Forage Seeds, Germination Frequency, Root Elongation.

I. INTRODUCTION

In veterinary medicine, antibiotics are frequently used for the treatment of infectious diseases such as enteritis, hoof diseases, mastitis, metritis and pneumonia [1]-[2]. Some of these antibiotics are not completely metabolized and can be eliminated through the milk, urine and/or cattle manure [5]-[9]. Thus, these bioactive molecules can reach the soil and affect the composition of the microbiota [10]-[13] and the development of plants [14]-[16]. In addition, antibiotic residues can reach the rivers adjacent to livestock farms [17]-[21] or cross the soil, reaching the groundwater [22]-[25]. This problem can be exacerbated in the case of small cheese industries that use landfarming to treat whey contaminated with antibiotics [26]-[27]. This bioremediation technique requires the use of large land plots, presents slow degradation rates, and needs long periods of stabilization to complete the treatment. So, the impact of landfarming on the environment must be carefully evaluated for each case [28].

Among the various methodologies used to evaluate the environmental impact of antibiotics, some authors have proposed to carry out phytotoxicity studies on seed germination and plant growth. For example, [16] analyzed the effect of six antibiotics (chlorotetraycline, tetracycline, tylosin, sulfamethoxazole, sulfamethazine and trimethoprim) on the growth of rice (Oryza sativa L.), cucumber (Cucumis sativus L.) and endive (Cichorium endivia) and found that 0.10 mg/L of sulfamethoxazole is harmful for the development of rice plants. In addition, [21] indicated that 20 mg/L of chlortetracycline produces yellowing, growth retardation and reduction of the leaf expansion in Arabidopsis thaliana. Similarly, [29] analyzed the effect of ten antibiotics (amoxicillin, chlorotetacycline, levofloxacin, lincomycin, oxytetracycline, sulfamethazine, sulfamethoxazole, tetracycline, trimethoprim and tylosin) on the germination and development of lettuce (Lactuca sativa), alfalfa (Medicago sativa) and carrots (Daucus carota). These authors indicated a wide range of dangerous antibiotic concentrations, ranging from 3.9 µg/L levofloxacin for L. sativa to 10000 µg/L trimethoprim for M. sativa and D. carota, and emphasized that levofloxacin, chlorotetacycline and tetracycline are the compounds with highest toxicity and that amoxicillin and trimethoprim are those with lowest toxicity. Reference [30] also evaluated the phytotoxic effects of some veterinary antibiotics (chloramphenicol, erythromycin, norfloxacin, sulfamethazine and tetracycline) on the seed germination and root elongation of lettuce (L. sativa), tomato (Solanum lycopersicum), carrots (D. carota) and cucumber (C. sativus L.). Their results showed that these compounds significantly inhibit the root elongation (p <0.05) of the four species studied, highlighting that tetracycline was associated with the highest level of toxicity and that lettuce was the most sensitive crop. Reference [31] studied the effect of five antibiotics (enrofloxacin, kanamycin, oxytetracycline, penicillin and tylosin) on the germination frequency and root elongation of five crops and found phytotoxic effects of 0.10 mg/L enrofloxacin on sorghum (Sorghum bicolor), 0.15 mg/L kanamycin on corn (Zea mays) and soybean (Glycine max), 0.004 mg/L penicillin on corn (Z. mays), soybean (G. max) and sorghum (S. bicolor) and 0.05 mg/L tylosin on soybean (G. max).

The purpose of this work was to study the phytotoxicity of five antibiotics (enrofloxacin, kanamycin, oxytetracycline, penicillin and tylosin) on the germination frequency and root elongation of three forage species frequently cultivated in Argentina: alfalfa (Medicago sativa), melilotus (Melilotus albus) and white clover (Trifolium repens).

II. MATERIALS

A. Antibiotics

Representative drugs were selected from five groups of antibiotics: enrofloxacin (quinolones), kanamycin (aminoglycosides), oxytetracycline (tetracyclines), penicillin (beta-lactams) and tylosin (macrolides). To evaluate the possible phytotoxic effect of whey containing...
antibiotic residues deproteinized whey was used. To this end whey was treated at 120°C for 20 minutes, followed by a removal of the precipitated proteins by filtration. Subsequently antibiotic aliquots at concentrations equivalent to their acceptable maximum residue limits (MRLs) in milk [32]-[33] were added as minimum study values (MRL_enrofloxacin: 0.10 mg/L, MRL_oxytetracycline: 0.10 mg/L, MRL_kanamycin: 0.15 mg/L, MRL_penicillin: 0.004 mg/L, MRL_tetracycline: 0.05 mg/L). Based on these levels, solutions containing the following concentrations of antibiotics were prepared using a logarithmic scale: C₀= 0 MRL, C₁= 1 MRL, C₂= 10 MRLs, C₃= 100 MRLs and C₄= 1000 MRLs.

B. Forage Seeds

Seeds from the following forage species were provided by the Department of Intensive Cultivation of Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, (Argentine): alfalfa (Medicago sativa), melilotus (Melilotus albus) and white clover (Trifolium repens).

C. Phytotoxicity Studies

The standard protocol to perform toxicity tests on terrestrial plants was followed [4]-[29]-[34]. Seeds from the chosen species were stored for one month at 4°C. Subsequently, 900 experimental units of each species were selected according to the toxicity tests in the protocol for terrestrial plants [35]. For each seed and antibiotic concentration, five replicates were made in Petri plates (100 x 15 mm) using 25 Petri plates/antibiotic and seed. On each plate, 10 seeds were placed on a Whatman cellulose filter. Subsequently, 10 ml of each of the deproteinized whey solutions containing different levels of antibiotics (C₀, C₁, C₂, C₃ and C₄) was added.

The plates were covered with Parafilm M (Sigma-Aldrich) to avoid drying and incubated for seven days at 25°C in a chamber. According to the protocol for the control of germination, the criterion of acceptability was set at 70%.

III. METHODS

I. Relative Germination Frequency.

For each seed and antibiotic concentration, relative germination frequencies were calculated at 12-hour intervals and over a period of seven days (14 controls). For this, the following Logistic Regression Model (LRM) of the statistical software Stat Graphics® Centurion was used:

\[Y_{ijk} = \log \left(\frac{P_{ijk}}{1-P_{ijk}} \right) = \gamma_0 + \gamma_1 t_i + \sum \gamma_j W_j + \epsilon_{ijk} \]

(1)

Where: \(Y_{ijk} = \log \left(\frac{P_{ijk}}{1-P_{ijk}} \right) \): Seed germination frequency; \(\gamma_0 \), \(\gamma_1 \), \(\gamma_j \): Coefficients estimated by the logistic model; \(t \): Effect of the germination time \((i=14); \) \(W_j \): Effect of antibiotic concentration in terms of dummy variables \((W_1: C_1=0, C_2=0, C_3=0 \text{ and } C_4=0; W_2: C_1=1, C_2=0 \text{ and } C_3=0 \text{ and } C_4=0; W_3: C_1=0, C_2=1, C_3=0 \text{ and } C_4=0; W_4: C_1=0, C_2=0, C_3=1 \text{ and } C_4=0; W_5: C_1=0, C_2=0, C_3=0 \text{ and } C_4=1) \) and \(\epsilon_{ijk} \): Residual error.

II. Root Elongation.

Seven days after the start of the experiment, the lengths of each root were measured in duplicate. Measurements were made from the tip of the radicle to the hypocotyl, using a Vernier caliper with a precision sensitivity of 0.05 mm. Analysis of Variance (ANOVA, Stat Graphics® Centurion) was used to evaluate the effect of the different concentrations of antibiotics on root elongation. Then, the Tukey test was applied to analyze significant differences in each antibiotic concentration.

IV. RESULTS AND DISCUSSION

I. Relative Germination Frequency.

Table 1 shows the statistical results ("\(\gamma_2 \)" and "\(p \)" value) of the application of the logistic regression model for the different concentrations of antibiotics that significantly affected the germination frequencies of the seeds (p <0.05). In that sense, enrofloxacin affected Medicago sativa and Trifolium repens, whereas kanamycin inhibited M. sativa and Melilotus albus. Oxytetracycline negatively affected the germination of the three forage species, whereas penicillin and tylosin were the most harmless ones.

Table 2 presents the significant effect (p <0.05) of the time on the germination frequencies (\(\gamma_1 \) positive coefficients) and the action of the different concentrations of antibiotics on the seeds (\(\gamma_2 \) negative coefficients). The phytotoxicity of antibiotics was evidenced by the increase in the magnitude of the \(\gamma_2 \) coefficients. Thus, the effect of enrofloxacin on T. repens was stronger (\(\gamma_2 = -2.4049 \)) than that of kanamycin on M. albus (\(\gamma_2 = -0.5021 \)).
Table 2: Logistic equations relating the germination frequency of seeds forage with time and concentrations of antibiotics

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Seeds</th>
<th>$L = \gamma_0 + \gamma_1 t + \sum \gamma_i W$</th>
<th>γ_0</th>
<th>γ_1</th>
<th>γ_2</th>
<th>Concentration</th>
<th>$C_{%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin</td>
<td>Medicago sativa</td>
<td>2.0385</td>
<td>0.914</td>
<td>-1.2529</td>
<td>-2.4049</td>
<td>C1 = C2 = C3 = C4</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Trifolium repens</td>
<td>-3.9283</td>
<td>1.1798</td>
<td>2.4049</td>
<td></td>
<td>C1 = C2 = C3 = C4</td>
<td>78</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Medicago sativa</td>
<td>-1.2559</td>
<td>1.3593</td>
<td>-1.3379</td>
<td></td>
<td>C4</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Melilotus albus</td>
<td>-1.7020</td>
<td>1.6749</td>
<td>0.5021</td>
<td></td>
<td>C1 = C2 = C3 = C4</td>
<td>80</td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>Medicago sativa</td>
<td>-0.6633</td>
<td>0.9637</td>
<td>-0.9481</td>
<td></td>
<td>C2 = C3 = C4</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Melilotus albus</td>
<td>-1.7802</td>
<td>0.7856</td>
<td>-1.4885</td>
<td></td>
<td>C1 = C2 = C3 = C4</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Trifolium repens</td>
<td>-3.6733</td>
<td>2.0077</td>
<td>-0.9481</td>
<td></td>
<td>C1 = C2 = C3 = C4</td>
<td>90</td>
</tr>
</tbody>
</table>

$\gamma_0, \gamma_1, \gamma_2$: Coefficients estimated by the model. t: Test time. $C_{\%}$: Percentage relative agreement. C_1 = 1 MRL, C_2 = 10 MRL, C_3 = 100 MRL, C_4 = 1000 MRL.

Table 3: Logistic equations relating the germination frequency of seeds forage with time and concentrations of antibiotics

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Seeds</th>
<th>$L = \gamma_0 + \gamma_1 t + \sum \gamma_i W$</th>
<th>γ_0</th>
<th>γ_1</th>
<th>γ_2</th>
<th>Concentration</th>
<th>$C_{%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin</td>
<td>Medicago sativa</td>
<td>5.1a ± 0.2</td>
<td>3.5b ± 0.3</td>
<td>3.8a ± 0.2</td>
<td>4.5b ± 0.2</td>
<td>4.2b ± 0.2</td>
<td>18.67</td>
</tr>
<tr>
<td></td>
<td>Melilotus albus</td>
<td>7.2a ± 0.2</td>
<td>5.0b ± 0.3</td>
<td>3.0 ± 0.3</td>
<td>2.9a ± 0.4</td>
<td>3.4a ± 0.4</td>
<td>45.98</td>
</tr>
<tr>
<td></td>
<td>Trifolium repens</td>
<td>4.7a ± 0.3</td>
<td>1.7b ± 0.4</td>
<td>1.3b ± 0.4</td>
<td>0.9a ± 0.3</td>
<td>1.8a ± 0.3</td>
<td>22.76</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Medicago sativa</td>
<td>5.4a ± 0.2</td>
<td>5.1a ± 0.2</td>
<td>4.7a ± 0.2</td>
<td>4.4a ± 0.2</td>
<td>3.4a ± 0.2</td>
<td>17.59</td>
</tr>
<tr>
<td></td>
<td>Melilotus albus</td>
<td>5.9a ± 0.4</td>
<td>5.1a ± 0.4</td>
<td>5.7a ± 0.4</td>
<td>5.2a ± 0.4</td>
<td>2.9a ± 0.5</td>
<td>6.84</td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>Medicago sativa</td>
<td>2.8a ± 0.1</td>
<td>2.6a ± 0.1</td>
<td>2.2a ± 0.1</td>
<td>1.0 ± 0.1</td>
<td>1.1 ± 0.1</td>
<td>52.33</td>
</tr>
<tr>
<td></td>
<td>Melilotus albus</td>
<td>4.4a ± 0.2</td>
<td>4.3a ± 0.2</td>
<td>3.1a ± 0.2</td>
<td>2.2a ± 0.2</td>
<td>1.7a ± 0.3</td>
<td>30.27</td>
</tr>
<tr>
<td></td>
<td>Trifolium repens</td>
<td>4.0a ± 0.3</td>
<td>3.6a ± 0.2</td>
<td>2.9a ± 0.2</td>
<td>1.2 ± 0.2</td>
<td>1.1 ± 0.2</td>
<td>28.80</td>
</tr>
<tr>
<td>Tylosin</td>
<td>Melilotus albus</td>
<td>5.3a ± 0.3</td>
<td>5.4a ± 0.2</td>
<td>4.8a ± 0.3</td>
<td>3.3a ± 0.3</td>
<td>3.3a ± 0.3</td>
<td>10.09</td>
</tr>
</tbody>
</table>

a, b, c: Different subscripts for values of the same row indicate significant differences at a level of $p < 0.05$. $\text{MRL}_{\text{enrofloxacin}}$: 0.10 mg/L, $\text{MRL}_{\text{oxytetracycline}}$: 0.10 mg/L, $\text{MRL}_{\text{kanamycin}}$: 0.15 mg/L, $\text{MRL}_{\text{penicillin}}$: 0.004 mg/L, $\text{MRL}_{\text{tylosin}}$: 0.05 mg/L.
Fig. 1. Effect of different concentrations of enrofloxacin on the germination frequency of seeds tested
(■: control; ●: C₁= 0.10 mg/L, C₂= 1.0 mg/L, C₃= 10 mg/L y C₄= 100 mg/L)

Fig. 2. Effect of different concentrations of kanamycin on the germination frequency of seeds tested
(■: control; ●: C₂= 150 mg/L)

Fig. 3. Effect of different concentrations of oxytetracycline on the germination frequency of seeds tested
(■: control; ●: C₁= 0.10 mg/L, C₂= 1.0 mg/L, C₃= 10 mg/L y C₄= 100 mg/L)

Copyright © 2017 IJAIR, All right reserved
841
It is observed that 0.10 mg/L enrofloxacin and oxytetracycline (1.0 mg/L) affected the root lengths of the three forage seeds, but that higher concentrations of kanamycin (150 mg/L) were necessary to affect *M. albus* and *M. sativa*, similar to that observed in the germination frequency (Figures 1 and 2). In contrast, 50 mg/L of tylosin inhibited the elongation of *M. albus* roots, but did not impair their germination frequency. This can be attributed to the fact that root elongation represents a more sensitive variable than the germination frequency, according to [4].

Similarly, [31] indicated that a low concentration of enrofloxacin (0.10 mg/L) affects *S. bicolor*, kanamycin (0.15 mg/L) inhibits *G. max* and *Z. mays* and tylosin (0.05 mg/L) affect *G. max*. In contrast, these authors indicated that a low concentration of penicillin (0.004 mg/L) is detrimental to the roots of *G. max*, *S. bicolor* and *Z. mays*.

Reference [29] reported the phytotoxic effect of oxytetracycline on the root elongation of *M. sativa* (10 mg/L), *L. sativa* (4.8 mg/L) and *D. carota* (1.6 mg/L). These authors also mentioned that tylosin (10 mg/L) inhibited the root elongation of *L. sativa* and *M. sativa*.

The effect of low antibiotic concentrations on root elongation can be seen in Fig. 5, where the action of enrofloxacin (0.10 mg/L) on *M. sativa* appears on day 7 of the experiment. This figure shows the significant decrease in root length due to enrofloxacin (Fig. 5a) compared to untreated seeds (Fig. 5b).

In summary, 0.10 mg/L enrofloxacin (MRL) caused a delay in the root elongation of the three forage species studied, with an average decrease of 60% in the length of *T. repens* roots, whereas higher concentrations of kanamycin (150 mg/L), oxytetracycline (1.0 mg/L) and tylosin (50 mg/L) were needed to produce effects on the roots of some forage seeds (Table 3). Similar to that observed in the study of germination frequencies, penicillin had no effect on the root elongation of any of the three forage species studied.

To avoid the environmental impact of these antibiotics, different technological alternatives tending to inactivate these molecules should be analyzed. For example, for the degradation of quinolone residues in water, [36] suggested solar photocatalytic processes. Another alternative for the degradation of antibiotic residues in milk is the use of thermal treatments. In fact, the sterilization process (120°C – 20 min) of milk contaminated with antibiotics causes a significant decrease in the antimicrobial activity of kanamycin [37], penicillin [38]-[39] and tylosin [40], but is not enough to inactivate enrofloxacin [41].

V. CONCLUSIONS

The results presented in this work show that antibiotics cause a phytotoxic effect on forage seeds. In fact, concentrations equivalent to the maximum residue limits (MRLs) established for the dairy industry are harmful to crops. In this sense, 0.10 mg/L enrofloxacin (MRL) affected alfalfa (*Medicago sativa*), melilotus (*Melilotus albus*) and white clover (*Trifolium repens*), whereas 0.10 mg/L oxytetracycline (MRL) affected *M. sativa* and *T. repens*.
With the aim to expand these findings, other antibiotics should be evaluated. On the other hand, to find a suitable biosensor to evaluate the environmental impact of antibiotics, it would be interesting to continue these studies with other biomarkers such as bacteria (e.g. *Vibrio fischeri*), algae (e.g. *Chlorella vulgaris*) and invertebrates (e.g. *Daphnia magna*) or fish (e.g. *Salmo trutta*).

ACKNOWLEDGMENT

This research was carried out as part of the CAI+D’11 (50120110100052 LI, Res. 444 / 13- List II year 2013, Universidad Nacional del Litoral, Argentina), PICT 455-2012 (Agencia Nacional de Promoción Científica y Tecnológica) and Professor Horacio Imvinkelried, from the Department of Intensive Cultivation of Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, (Argentina), are also acknowledged.

REFERENCES

