Agrobiological Assessments of Gooseberry (Ribes uva-Crispa) Varieties Depending on the Quality and Pure Variety of the Planting Material

G.S. Gabrielyan¹*, A.K. Muradyan¹, A.A. Manvelyan¹ and M.H. Ghazaryan¹

¹Faculty of Agronomy, Armenian National Agrarian University, Yerevan, Armenia.

Abstract – It is possible to get a high-quality crop due to the pure variety and properly formed certified seedlings of gooseberry (Ribes uva-crispa). It is known that gooseberry (Ribes uva-crispa) is planted in the tree nursery in the form single trunk trees with 4-5 skeletal branches. In our work, standard clean planting material (seedling) was used, the variety composition of which is diverse. The Round Red local type is of interest in terms of production and selection. At the same time, the species composition of harmful organisms of gooseberry (Ribes uva-crispa), was studied. The purpose of this article is to present the result of a comprehensive comparative study of the local red variety we have studied, to the production, as a variety with weak thorns, stable towards diseases and pests, also as a valuable raw material in the selection.

Keywords – Pure Species of Planting Material, Gooseberry (Ribes uva-Crispa) Root, Disease, Pest.

I. INTRODUCTION

Gooseberry (Ribes uva-crispa), is one of the relatively rare berry plants in Armenia. It is more common in Dilijan, Stepanavan, Gugark and in other humid regions of the republic. In Armenia comprehensive, thorough, selective, targeted research of local and imported varieties of Gooseberry (Ribes uva-crispa) has not been carried out yet.

Our work is relevant in that for the first time in the conditions of Dilijan region the characteristics of the common and local varieties of Gooseberry (Ribes uva-crispa) were examined as a selection raw material.

The aim of the work is to single out the varieties with valuable features and local types studied by us as selection raw material for further selection works. From the production point of view, such varieties of Gooseberry (Ribes uva-crispa) are valued, which should be either without thorns or weakly thorny, high-yielding, early ripening, sufficiently frost-resistant, anthracnose-resistant, not demanding to soil-climatic conditions, suitable for large-scale mechanized harvesting, easy to reproduce, high quality and with large fruits. As well as to identify the harmful organisms of the Gooseberry (Ribes uva-crispa) and to separate the most dangerous ones, to determine their habitat on different varieties.

The purpose of this article is to present the result of a comprehensive comparative study of the local red variety we have studied, to the production, as a variety with weak thorns, stable towards diseases and pests, also as a valuable raw material in the selection.

II. MATERIALS AND METHODS

The following tasks have been set to study of local and imported varieties of Gooseberry (Ribes uva-crispa) in the Dilijan region:

(a) Comparative study of phenotypic characteristics of selected varieties;

(b) To study the transition process of phenopoules of selected varieties;
(c) To study the quantity and quality of the harvest of the selected varieties;

(d) To substantiate the economic efficiency of cultivation of selected varieties;

(e) To separate valuable varieties as a selection raw material;

(f) To identify the species composition of Gooseberry (Ribes uva-crispa) pests, their degree of population on different varieties.

The experiments were conducted in the conditions of Dilijan region in the province of Tavush.

In this study, the morphological characteristics of leaves were studied in 3 varieties. In the summer, 5 random leaves of each variety were gathered. The characteristics were determined according to the International Description (UPOV): i.e. the length, width of leaf blade, length-width ratio, intensity of the green surface of the blade, base form, vertex angle, vertex length, edge cut, edge roughness, cross-section cut, chlorophyll.

The characteristics of the fruit were studied during this study. 5 fruits were collected from each variety.

The characteristics were assessed on the basis of international description, i.e.: fruit - size, form, height, form of the fruit top, the existence of the top, flatness of the fruit skin, hardness, hairy, shine, fruit color, flesh color, flesh hardness, fruit acidity, fruit resistance, sugar, the beginning of fruit maturation.

Some features were measured using special tools. Harvest time is based on the form, taste and color change [1, 5, 6, 7, 13].

Routine surveys, observations, sampling were conducted for pest detection. The skeletal branches, trunk, trunk bark, leaves, fruits both fallen and on the plant, the plant remnants and after the harvest, the waste and mummified fruits were examined. The collected samples were taken to a laboratory where the species composition of pests was identified.

The collection and fixation of harmful organisms was carried out according to the methods adopted in entomology and phytopathology [9, 10, 12].

III. RESULTS AND DISCUSSION

1st and 2nd grade pure variety seedling of Gooseberry (Ribes uva-crispa), produces fruit on 1-year-old perennial branches, in a garden of complete skeletal branches and one or two flowers appear in the leaf base.

The branches are covered with light reddish shoots, the leaves are lobed, the edges are toothed, covered with hairs from below. Produces broad branches with round or grooved shoots, grows fast.

According to our research in Table 1 Invicta variety stood out with a weak growth force of the bush, 1.6 meters high, and Round red local variety and “Green Bottle” variety stand out with medium growth and a width of 1.8-2.0 meters, are tall, with spreading foliage.

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Bush Growth Rate</th>
<th>Bush Height</th>
<th>The Direction of the Annual Shoot in Space</th>
<th>Thorns of Shoots</th>
<th>The Size of the Bud</th>
<th>The Form of the Bud Top</th>
<th>Shoot Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green bottle</td>
<td>Medium growth</td>
<td>Medium 2.0m</td>
<td>Standing</td>
<td>1 per each, few</td>
<td>Medium</td>
<td>Pointed</td>
<td>Reddish brown</td>
</tr>
</tbody>
</table>

Table 1. Phenotypic features of Gooseberry (Ribes uva-crispa) varieties.
Varieties	Bush Growth Rate	Bush Height	The Direction of the Annual Shoot in Space	Thorns of Shoots	The Size of the Bud	The Form of the Bud Top	Shoot Colour
Round red local | Medium growth | Medium 1.8m | Horizontal | 1-2-3 per each, medium | Medium | Round | Grey |
Invicta | Medium growth | Medium 1.6m | Semi standing | 2 per each, few | large | Wide pointed | Greenish brown |

Annual shoots Green-bottle and Invicta varieties are upright, while annual Round red local variety shoots thin, down-hanging and wavy. Annual shoots are reddish brown, and newly grown shoots are green.

The Green-bottle variety has one hard, straight, downwards thorn, the small thorns are absent. There is one thorn at the periphery of the Round red local variety, there are two at the middle and three at the bottom, but thin, light brown, perennial branches have no thorns.

On the shoots of Invicta variety, the thorns are arranged upright and in pairs. Annual shoots are hairless in all varieties.

The tops of the buds of the Invicta species are broadly ridged, at the Green Bottle Variety they are ridged, while the Round red local type has round bug tops.

The results of our research revealed that the leaves of the Round red local variety are naked, light green, a bit heart-shaped. The Green bottle variety, has dark green leaves, the leaf blade is rough, the edges are sharp, the leaves are large. Leaves of the Invicta variety are naked, dark green, medium sized.

There are 3 flowers in the inflorescence of Invicta and Green bottle varieties and the Round red local variety has 2-3, sometimes 1 flower.

The sepal of the Green bottle variety are reddish-purple, while in case of the Local red variety they are white-green with a pink edging, the flowers are small, those of the Invicta variety, are reddish-yellow.

The embryo is yellowish-green in all varieties, the Green bottle and the Round red local varieties are weakly hairy, and the Invicta variety is strongly hairy.

Fruits of Green bootle and Invicta varieties are large, while Round red local variety has small fruits. The form of the fruit of the green-bottle is elliptical, while the Invicta variety has an upside a pear form, and the fruit of the Red round local variety is round-shaped. Fruit skin is hard in Invicta variety, and the skin of Green bottle and Round red local variety is of medium hardness, the base of the fruit of Green-bottle and Invicta varieties are of medium length, and the length of the Peduncle is medium, the fruit is slight hairy in all varieties.

Table 2 presents the results of our research. The changes of the fruit buds are shown in Table 2. Table 2 shows that it takes 55-60 days from the beginning of blossom to full maturity of the fruit.

<table>
<thead>
<tr>
<th>Trial Options</th>
<th>Swelling of the Bush</th>
<th>Opening of Bush</th>
<th>Blossom</th>
<th>Fruit Formation</th>
<th>The Beginning of Fruit Ripening</th>
<th>The Full Fruit Ripening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green bottle</td>
<td>20.05.</td>
<td>24.05.</td>
<td>27.05.</td>
<td>01.06.</td>
<td>06.06.</td>
<td>16.06.</td>
</tr>
</tbody>
</table>
Swelling of the Buds | Opening of Buds | Blossom | Fruit Formation | The Beginning of Fruit Ripening | The Full Fruit Ripening
---|---|---|---|---|---
16.05. | 20.05. | 24.05. | 29.05. | 04.06. | 14.06. | 14.07. | 18.07.
Round red local variety
19.05. | 23.05. | 26.05. | 01.06. | 06.06. | 16.06. | 16.07. | 20.07.
Invicta
18.05. | 22.05. | 25.05. | 30.05. | 05.06. | 15.06. | 16.07. | 20.07.
13.05. | 17.05. | 20.05. | 25.05. | 30.05. | 10.06. | 11.07. | 15.07.

Blossoming lasts 7-10 days due to varieties; Fruit maturation varied from 1.5 to 2 months due to varieties. Invicta variety bears fruit along the entire length of the branch.

Blossom of Gooseberry (Ribes uva-crispa) takes place at +7 - (+18) 0C temperature, the varieties we studied are early blossoming varieties, the flowering period depends on the variety, local conditions, the best flowering conditions are +15 - (+20) 0C temperature, 60-65% relative humidity, 1-3 m/s wind speed.

Gooseberry (Ribes uva-crispa) is a honey-producing variety, pollinated by bees and high yields are obtained by cross-pollination, but it is obvious that all varieties of Gooseberry (Ribes uva-crispa) are self-pollinating.

The inflorescence is a raceme, that has 1-5 flowers, the sepal are green to red, the petals are green, white-pink and small. The flowers are bisexual, hairy, sessile, do not have a pedicel, are bell-shaped. The fruit sepal is non-falling. The fruit is a fake multi-seeded berry [11]:

We studied the infection of the seedling with harmful organisms, according to which the first-class seedling was free of harmful organisms, there were Synanthedon tipuliformis, Tetranychus urticae on the second-class seedling.

The third type seedling was the most infected, on which was recorded Aphis grossulariae, Synanthedon tipuliformis, Tetranychus urticae, Powdery mildew gooseberry [8, 13, 15].

As a result of our research The Invicta and Green bottle varieties stand out with high yields, providing a yield of 12.0-15.0 t/ha, respectively.

The Green Bottle variety is in the first place by size of the fruit, after comes the Invicta variety, and the smallest fruits has the Round red local variety.

Gooseberry (Ribes uva-crispa) is widely used in organic agriculture. The harvested berries can be stored for 7-10 days at a temperature of 0-0.50C and 80-85% relative humidity in fruit refrigerators.

All of these varieties and the local one have a multifunctional nature, are resistant to spotting. The Green bottle variety stood out with the highest yield, and the Round red local variety with the lowest.

The Round red local variety is sweet and more importantly the ripe fruits of this variety stay on the bush for a long time without falling, the Invicta and the Green Bottle varieties stand out with pleasant acidity [2, 3, 4]:

The results of our research are summarized in Table 3.
Table 3. Average quality features of the Gooseberry (Ribes uva-crispa) fruits.

<table>
<thead>
<tr>
<th>Name of the Varieties</th>
<th>Average Height of Fruit, mm</th>
<th>Fruit Diameter, mm</th>
<th>Total Number of Acids, %</th>
<th>Total Number of Sugar, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green bottle</td>
<td>30</td>
<td>10</td>
<td>1.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Round Red local variety</td>
<td>10</td>
<td>6.0</td>
<td>0.5</td>
<td>10.0</td>
</tr>
<tr>
<td>Invicta</td>
<td>27</td>
<td>15</td>
<td>0.7</td>
<td>9.0</td>
</tr>
</tbody>
</table>

In order to detect harmful organisms, 12 species of harmful organisms were recorded as a result of our research on the following Gooseberry (Ribes uva-crispa) varieties; Green Bottle, Round Red local and Invicta, 7 of which are insects: *Pteronidea ribesii*, *Synanthedon tipuliformis*, *Abraxas grossulariata*, *Aphis grossulariae*, *Myzus persicae*, *Dolycoris baccarum*, *Parthenolecanium corni*, 2 of which are tick - *Tetranychus urticae*, *Schizotetranychus pruni* [8], and 3 diseases: *Sphaerotheca mors-uvae*, *Gloeosporium ribis*, *Septoria ribis* [9, 14, 15]. The species composition of pests on Gooseberry (Ribes uva-crispa) is presented in Table 4.

<table>
<thead>
<tr>
<th>N</th>
<th>Scientific Name of Pest</th>
<th>English Name</th>
<th>Damaging Phase</th>
<th>Damaged Organ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pteronidea ribesii</td>
<td>Common gooseberry sawfly</td>
<td>larva</td>
<td>Leaf</td>
</tr>
<tr>
<td>2</td>
<td>Synanthedon tipuliformis</td>
<td>Currant borer moth</td>
<td>larva</td>
<td>Branch, shoot</td>
</tr>
<tr>
<td>3</td>
<td>Abraxas grossulariata</td>
<td>Magpie moth</td>
<td>larva</td>
<td>Leaf</td>
</tr>
<tr>
<td>4</td>
<td>Aphis grossulariae</td>
<td>Gooseberry aphid</td>
<td>Larva, adult</td>
<td>Trunk, branch</td>
</tr>
<tr>
<td>5</td>
<td>Myzus persicae (Sulzer)</td>
<td>Potato (green peach) aphid</td>
<td>Larva, adult</td>
<td>Leaf, young shoot, fruit</td>
</tr>
<tr>
<td>6</td>
<td>Dolycoris baccarum</td>
<td>Hairy shieldbug</td>
<td>Larva, adult</td>
<td>Leaf, branch, fruit</td>
</tr>
<tr>
<td>7</td>
<td>Parthenolecanium corni</td>
<td>Brown fruit scale</td>
<td>Larva, adult</td>
<td>Trunk, branch, shoot</td>
</tr>
<tr>
<td>8</td>
<td>Tetranychus urticae</td>
<td>Red Spider Mite</td>
<td>Larva, adult</td>
<td>Leaf, young shoot, fruit</td>
</tr>
<tr>
<td>9</td>
<td>Schizotetranychus pruni</td>
<td>Garden Spider Mite</td>
<td>Larva, adult</td>
<td>Leaf, young shoot, fruit</td>
</tr>
</tbody>
</table>

Table 5. Species composition of diseases on Gooseberry (Ribes uva-crispa) (2019-2021).

<table>
<thead>
<tr>
<th>N</th>
<th>Scientific Name</th>
<th>Pathogen</th>
<th>English Name</th>
<th>Infected Organ of Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Powdery mildew gooseberry</td>
<td>Sphaerothecamors-uvae Berk. Et Curt.</td>
<td>Powdery mildew gooseberry</td>
<td>Leaf, fruit, shoot</td>
</tr>
<tr>
<td>2</td>
<td>Anthracnose currants</td>
<td>Gloeosporium ribis Pseudopezizaris Kleb.</td>
<td>Anthracnose currants</td>
<td>Leaf</td>
</tr>
<tr>
<td>3</td>
<td>Gooseberry leaf spot</td>
<td>Septoria ribis Mycosphaerella ribis</td>
<td>Gooseberry leaf spot</td>
<td>Leaf</td>
</tr>
</tbody>
</table>

During the research conducted by us, the population of different varieties of Gooseberry (Ribes uva-crispa) with harmful organisms was studied (Table 6).
Table 6. Population of different varieties of Gooseberry (Ribes uva-crispa) with harmful organisms (2019-2021)

<table>
<thead>
<tr>
<th>N</th>
<th>Scientific Name of Pest</th>
<th>Population%</th>
<th>Infection rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Green Bottle</td>
<td>Round Red Local Variety</td>
</tr>
<tr>
<td>1</td>
<td>Pteronidea ribesii</td>
<td>61.2</td>
<td>41.6</td>
</tr>
<tr>
<td>2</td>
<td>Synanthedon tipuliformis</td>
<td>68.7</td>
<td>43.8</td>
</tr>
<tr>
<td>3</td>
<td>Abraxas grossulariata</td>
<td>35.9</td>
<td>18.4</td>
</tr>
<tr>
<td>4</td>
<td>Aphis grossulariae</td>
<td>59.3</td>
<td>47.3</td>
</tr>
<tr>
<td>5</td>
<td>Myzuspersicae (Sulzer)</td>
<td>24.4</td>
<td>19.7</td>
</tr>
<tr>
<td>6</td>
<td>Doloocoris baccarum</td>
<td>43.5</td>
<td>26.2</td>
</tr>
<tr>
<td>7</td>
<td>Parthenolecaniumcorni</td>
<td>33.3</td>
<td>40.8</td>
</tr>
<tr>
<td>8</td>
<td>Tetranychus urticae</td>
<td>39.5</td>
<td>16.4</td>
</tr>
<tr>
<td>9</td>
<td>Schizotetranychus pruni</td>
<td>30.6</td>
<td>18.2</td>
</tr>
<tr>
<td>10</td>
<td>Powdery mildew gooseberry</td>
<td>78.9</td>
<td>42.1</td>
</tr>
<tr>
<td>11</td>
<td>Anthracnose currants</td>
<td>62.5</td>
<td>39.7</td>
</tr>
<tr>
<td>12</td>
<td>Gooseberry leaf spot</td>
<td>42.7</td>
<td>33.7</td>
</tr>
</tbody>
</table>

It is clear from the presented data that among the studied varieties of Gooseberry (Ribes uva-crispa) the Green Bottle variety is the most contagious, and among the harmful organisms *Pteronidea ribesii*, *Synanthedon tipuliformis*, *Aphis grossulariae*, *Sphaerotheca mors-uvae*, *Gloeosporium ribis* stood out, and the round red local variety has shown high resistance towards diseases and pests.

IV. CONCLUSION

Pure variety and quality Gooseberry (Ribes uva-crispa) seedlings have a decisive influence on the quality and quantity of the yield, as well as to show resistance towards various environmental factors, resistance to harmful organisms.

Green Bottle and Invicta varieties are valued for their selectivity, high yield, fruit size, and less thorn, and the Local red variety is valued for the fact that its ripe fruits remain on the bush for a long time without falling.

In terms of use as selection raw material, these varieties are valued for their fruit multifunctionality, resistance to spotting, and the Round local red variety is immune to other fungal diseases. Gooseberry (Ribes uva-crispa) is valued in terms of production because it is widely used in organic agriculture.

REFERENCES

[10] Prognosis of the emergence and registration of pests and diseases of agricultural crops. Moscow, 1959, p.23-76. (in Russian)

AUTHOR’S PROFILE

First Author
Gayane Sardari Gabrielyan, PhD, Associate Professor at the Department of Horticulture and Plant Protection, National Agrarian University of Armenia. I have published more than a dozen scientific and methodological works related to the anatomy of fruits and plants. Author of 13 scientific papers and 1 methodica, 2 manuals. Phone: +37477 95 42 24.

Second Author
A.K. Muradyan, PhD, Lecturer at the Department of Horticulture and Plant Protection, National Agrarian University of Armenia. I have published more than a dozen scientific and methodological works related to the anatomy of fruits and plants. Author of 11 scientific papers. Phone: +37493 40 83 32. Email: muna.mamyt1957@gmail.com

Third Author
Armine Ashot Manvelyan, PhD, Associate Professor at the Department of Horticulture and Plant Protection, National Agrarian University of Armenia. Head of chair Horticulture and Plant Protection. Field of Study: Entomology, Plant protection, Harmful lice, nematodes, rodents. Author of 22 scientific papers and 1 methodica, 1 manuals. Phone: +37491 31 43 23. Email: armjes77@mail.ru

Fourth Author
Margarit Hakob Ghazaryan, Applicant, assistant of chair Horticulture and Plant Protection, National Agrarian University of Armenia. Field of Study: Entomology, Plant protection, Harmful lice, nematodes, rodents. Author of 8 scientific papers. Phone: +37498 70 11 60. Email: maga.ghazaryan@gmail.com

Copyright © 2022 IJAIR, All right reserved
173